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ASYMPTOTIC MODELS
FOR THE DISCRETE OPTIMAL CONTROL
OF THE DEFORMATION OF AN ELASTIC MEMBRANE

I. I. Argatov UDC 519.6

This paper considers the singularly perturbed static problem of the optimal control of the deformation
of an elastic membrane by means of external loads (control without constraints) applied to several
small areas distant from each other. The objective functional is equal to the sum of the square of the
root-mean-square approximation error and the square of the norm of the external load. Asymptotic
models are constructed using the method of matched asymptotic expansions.
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INTRODUCTION

As is known, in contrast to an elastic plate (in the Kirchhoff) theory), an elastic membrane does not take up
a concentrated load, i.e., in the vicinity of the point of application of a concentrated force, the membrane deflection
function has a logarithmic singularity and the displacement at this point is theoretically infinite. However, if
an external load is distributed over a small area, it is possible to speak of quasipoint loads and consider the
corresponding approximate mathematical models. In the present paper, we construct asymptotic models for the
optimal control of the deformation of an elastic membrane by means of quasipoint loads.

Khludnev [1] studied the problem of controlling external loads for a shallow shell with a crack in the case
where the objective functional characterizes the crack opening. A number of optimal control problems for elastic
plates were studied in [2]. Sokolowski and Zochowski [3] investigated the optimal control problem without constraints
for an elastic membrane in the case where the objective functional is the sum of the square of the root-mean-square
approximation error and the square of the norm of the controlling external loads. Nazarov [4] performed an
asymptotic analysis of the deformation of an elastic membrane above a system of several small cylindrical supports
for the case where the membrane is acted upon by the singular responses of the supports of arbitrary cross sections
that are concentrated at the sharp edges of the supports.

In the present paper, a formal asymptotic representation of the solution of the optimal control problem [3]
is constructed for the case where the controlling external loads are applied at several small areas distant from each
other and from the membrane contour. The discrete optimal control problem is considered under the assumption
that the controlling loads are distributed uniformly. In this case, the shape of the objective functional is different
from that in [3]. The problem of the optimal control of the deformation of an elastic membrane by means of several
spherical dies is investigated. In this problem, the dimensions and arrangement of the small areas over which the
load is transferred from the dies to the membrane are not known in advance.
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1. CONTROL OF QUASIPOINT LOADS

1.1. Formulation of the Problem. Let 2 be a bounded domain with a piecewise smooth boundary I’
on a plane R2. Inside the domain 2, we choose points P!,..., PV with coordinates (x{,xj), j=1,...,N. The
least distance between the points P/ and P* for k # j will be denoted by d. We assume that these points are
separated from the contour I' by distances not smaller than d. In addition, let w’ be a simply connected domain on
a plane that contains the coordinate origin and is enclosed in a circle of diameter d. We introduce a small positive
parameter ¢ and set

wl = {x = (z1,29): ez —27) € wj}.

Let xZ(z) designate the characteristic function of the domain w?, i.e., xi(x) = 1 if x € w! and yI(x) = 0 if x & wi.
We assume that an elastic membrane with a uniform tension 7" occupies the domain €2 and is clamped on
the contour I'. We consider the problem of its deformation under the action of a uniform surface pressure with

densities g1, . .., gy which is distributed over small areas w?, ..., w™:
N
—TAu(x) = ng(x)qj, x e (1.1)
j=1
u(z) =0, zel. (1.2)

Resultant pressure g; applied to the area w? will be denoted by Qj:

Qj = // g dx1 dxs. (1.3)

Qj = gjlwll. (1.4)
We consider the problem of determining the optimal load from the minimum condition for the objective
functional

In the case of the uniform load, we have

N

1@ Q) = 3 3 (aP) )+ 0,720 (15)
j=1

In Egs. (1.4) and (1.5), u) and 0 < «; are specified constants (j = 1,...,N), [wl| = £?|w| is the area of the
domain w!, and u(P7) is the average displacement on the area w? with center at the point P7:

a(P?) = |w—1§| z/u(x) dx. (1.6)

Remark 1. The normalization in the second term of the sum (1.5) is such that the constant a; (the penalty
parameter) is a dimensionless quantity. At the same time, by virtue of relations (1.4) and (1.6), the elastic energy

N
1
J(u) = 52//qju(a:) dx
J=1 wg
stored in the membrane can be written as
1 N
() =5 ]Z:; Qa(P?).

Thus, the quantities @; and @(P?) (j = 1,...,N) can be treated as the generalized forces and the corresponding
generalized displacements.

In other words, the minimization of the functional (1.5) with respect to the quantities Q1,...,Qn implies
the validity of the approximate equalities u(P7) ~ u} (j = 1,...,N) with the least possible quasipoint loads with
densities |w?|71Q; distributed over the areas w! (j =1,...,N).
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1.2. Construction of Asymptotic Representation. We use the method of matched asymptotic expan-

sion (see [4-6]) to construct the main terms of the external (at a distance from the points PL, ..., PY) and internal
(near the areas w},...,w) asymptotic expansions of the solution u(z) of problem (1.1), (1.2) for the case [see

formula (1.4)]
AR IE (1.7)

the quantities @; (j =1,...,N) do not depend on the parameter ¢.
Passing to the limit as ¢ — 0 in relations (1.1) and (1.2), we obtain the first limiting problem

Ayv(z) =0, € Q\{P',..., PN}, v(z) =0, zel. (1.8)

The solution of problem (1.8) is sought in the form
v(x) = c1G1(x) + ...+ enGn (). (1.9)
Here c1,...,cn are certain constants, G;(x) is the Green function of the Dirichlet problem that has a pole at the

point P7 and satisfies the relations
A,Gj(z) =0, z€Q\P, Gj(z)=0, zeTl,

) } | (1.10)
Gj(z) = —(2r) ' In|z — P/ + O(1), x — P7.

Subsequently, we shall need the following asymptotic formula, which specifies the second formula in (1.10):
Gi(x) = —@2m)tIn(jz — P|/r)) + 0(1), & — P’ (1.11)
(7‘6 is the internal harmonic radius of the domain §2 with respect to the point P7).
To construct the internal asymptotic representation w’(£7), we pass to the “stretched” coordinates in the
vicinity of the area wi:
¢ = Ya— P7). (1.12)
Taking into account the relations A, = e ?A¢ and |w!| = 2|w’| and formula (1.7), from Eq. (1.1) we obtain
~TAqw’ (&) =X ()’ |'Q;, £ R (1.13)

Here /(&) is the characteristic function of the domain w’.
For Eq. (1.13), we impose an asymptotic condition at infinity, which is obtained by matching the internal
w (¢7) and external v(x) asymptotic representations based on the asymptotic formula (1.11):

w’ (&) = —% In Ei” +§cka(Pj)+o(1), |€7| — oo. (1.14)

With the use of the logarithmic potential with constant density on the area w?, the solution of problem
(1.13), (1.14) is written as

w’ (&) = e, //ln|§ 71| dn + const. (1.15)

27w

In expression (1.15), we distinguish the function with zero average on the area w’. For this, we introduce the
quantity R/ which has the dimension of length and is defined by the formula

_ﬁ////mg_mdndg:%—mRJ’. (1.16)

wi(e) = - L9 (// I | — n|dy + |wj|(% ~mR)) ad (P). (1.17)

We set

27| wI |

The quantity @’ (P7) has the meaning of the average value of the function w’(¢) on the area w?:
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() = ﬁ / / w! () di. (1.18)

Under the assumption that the origin of the coordinates &7 coincides with the center of gravity of the figure w’ (i.e.,
the point P? coincides with the center of gravity of the area w?), function (1.17) at infinity behaves as follows:
w(© =~ (m B Dy wiey voge ). - . (1.19)
27T R4
From the equality of the terms distinguished in expansions (1.14) and (1.19), we find that ¢; = T7'Q; and obtain
the relations

&(1ni+3) +) T QGR(PY) = w! (PY). (1.20)

2nT eR1 4 /

k#j

We introduce the notation
1 o1 ,
= 0 4= - J ;
G %(m L+ 4), Gir = Gr(P?), k#j. (1.21)
Then, relation (1.20) becomes
w (P1) = GipT ™' Q. (1.22)
k=1

It is obvious that the matrix G = ||Gji|| ;V w—1 is symmetric and that for small values of the parameter ¢, it is positive
definite.
Substitution of the asymptotic representation w’(P7) of the quantity 4(P7) into functional (1.5) yields

N

N 2
I*(Qu,...,Qn) = % > (Z G T71Qy — ug) +a,;T72Q3. (1.23)
k=1 k=1
The functional I*(Q) is an asymptotic representation of the objective functional I(Q).
Remark 2. It is easy to verify that in the case of a circular domain w’, the quantity R, which is defined
by formula (1.16), coincides with the radius of the circle w’. In the case of an elliptic area w’ with semiaxes a’ and

b/, using the calculation results [7, § 15], we obtain
R = (a? +V)/2. (1.24)

From formula (1.24), it follows that in the case of an elliptic domain w’, the quantity R’ coincides with its external
conformal radius (see, for example, [8, § 1.3]).

1.3. Optimality Condition. Let the vector Q = (Q1,...,Qn) and the function u(Q, x) be a solution of
the optimal control problem considered, i.e., the vector () minimizes the functional (1.5), where u is a solution of
the boundary-value problem (1.1), (1.2).

We fix the index j and denote by §,;@ the partial variation of the control Q):

5;,Q =(0,...,0,6Q;,0,...,0)  (j=1,...,N).

Then, by virtue of the linearity of problem (1.1), (1.2), the variation of the state of the membrane d;u = u(Q +
3;Q) — u(Q) satisfies the following problem:

~TASju(r) = xi(v)|w!]|16Q,, =€, dju(z) =0, =zel. (1.25)
Accordingly, the partial variation of functional (1.5) has the form
N
5,1(Q,5,Q) = Z(a(Pk) - u’g)aja(Pk) + 0, T2Q;0Q);, (1.26)
k=1
where
5,a(PF) = |w—1k| / 5u(x) da. (1.27)
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Let G(y,x) be the Green function of the Dirichlet problem that has a pole at the point y € Q and satisfies
problem (1.10) in which the point P? needs to be replaced by y. Then, the solution of the problem (1.25) can be

written as
0Q;
5 ; / / 2)dy. 1.28
U T|w§| (y,x ( )
Substitution of expression (1.28) into relation (1.27) ylelds
§;u(P*) = T~'G5, 6Q;, (1.29)
where
= |w§|_1|wg|_1 /// G(y,z) dy dz. (1.30)
wE Wl
Thus, by virtue of relations (1.26) and (1.29), the particle variation of the objective functional (1.5) becomes
N
6,1(Q,0,Q) = (Y ((PY) —ub) TGS, + 0, T2Q; )60 (1.31)
k=1

Hence, a necessary condition that the functional (1.5) be stationary on the vector @ [6,;1(Q,d;Q) = 0 for any partial
variation 6;()] can be written, in accordance with expression (1.31), as follows:
N

> (@(PF) —uf)G5 + 0, T7'Q; =0 (j=1,...,N). (1.32)
k=1

We calculate the asymptotics of the quantity G5, as e — 0. Let first k¥ # j. For a fixed point z € wk for
y € wl, from the Taylor formula we have

, oG , . 06, ,
G(y,x) = G(P?,x) + 2—(P),2)(y1 — 1) + 7—(P?,2)(y2 — 23) + O(e?).
on 0y

Because the point P* is assumed to coincide with the center of gravity of the area w”, we obtain
< = |w§|—1/ G(P?,x)dx + O(<2).
Similar reasoning leads to
G5 = G + O(£?), e—=0  (k#7). (1.33)
Let now k = j. Transforming to the coordinates (1.12), we obtain
G5; = Wi /// G(P7 +en, P + <€) dn d€. (1.34)

We recall that by the definition of the Green function,
Gly,z) = —(2m) " nly — 2| + g(y, 2),
where ¢(y, ) is a regular function. Therefore,

8g dg

G(P? +en, P +2¢) = —(27) " Ineln — & + g(P7, P7) +EZ
=1

(P9 Py 5 (P PG +0(). (139)

By the definition of the inner harmonic radius, we have
g(P?,P7) = (2m) ' Inv. (1.36)
Substitution of expansion (1.35) into integral (1.34) with the use of (1.36) yields

e 1 7'6 2
27"ij:—le|2////1n|77—§|dnd§+ln?+0(g )s e — 0.

728



Finally, taking into account Eq. (1.16) and the notation (1.21), we have
G5, =Gj;+0(%), e—0. (1.37)

At the same time, the necessary condition for an extremum of function (1.23) at the point @ is written as
(j=1,...,N)

N N
S (X GuT @ — uh) Gip + 0y T71Q; =0, (1.38)
=1

k=1

In view of relations (1.22), (1.33), and (1.37), it can be concluded that if the asymptotic relations (1.38) are
satisfied, the optimality condition (1.32) is satisfied with accuracy up to O(g?|In¢|) for € — 0.

2. CONTROL OF SMALL DIES

2.1. Formulation of the Problem. Let an elastic membrane 2 under a uniform tension 7" clamped on
the contour I' be acted upon by a system of N dies in the form of circular paraboloids:

Oj(x) = 2R) (w1 —2])* + (w2 —b)’]  (G=1,...,N). (2.1)
Then, the membrane deflection function satisfies the problem (see, for example, [9, 10])

—TAzu(z) >0, u(z) > u(P?) — &;(x),

‘ . (2.2)
Azu(z)[u(z) — uw(P’) 4+ ®;(z)] =0, rewl (j=1,...,N);
N
Azu(z) =0, x e N\ U wi; (2.3)
u(z) =0, zel. (2.4)

Here u(P7) is the translational displacement of the die with number j, which is to be determined from the specified
value of the force acting on the die; Wwlisa domain that encompasses the a priori unknown contact area w! under
the die with number j. It can be assumed that w’ coincides with area (2.2) (see [11]).

Problem (2.2)—(2.4) is studied under the assumption of small contact areas. We introduce a small positive
parameter ¢ and set

Ryj=eR:  (j=1,...,N), (2.5)

where the quantities R} are comparable to the characteristic distance d. Then, wi is a circle of radius O(y/2d).
According to the adopted shape of the die (2.1), the pressure

gj(7) =TA®;(z) (v €wl)
transferred by the die to the membrane is uniform over the contact area w:
gj(z) = 2Rj_1T, T € wl. (2.6)

In this case, the location of the boundary of the contact area w? in the vicinity of the point P7 is not known in
advance.
Hence, the force ); acting on the die with number j is equal to

Qj =2R;'T|w|. (2.7)

The quantities @; and u(P7) (j = 1,...,N) can be treated as the generalized forces and their corresponding

generalized displacements. In the specification of the forces @1, ..., Qn, the equilibrium equations (2.7) serve to
determine the displacements u(P?), ..., u(PY).
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Let ug, ..., ul be specified constants. Then, the minimization of the functional

N
1 , j _
Qu 1 Qn) = 5 Y (u(P)) = u)* + oy T3 (23)
j=1
with respect to the quantities Q1,. .., Qy implies an approximation to the satisfaction of the equalities u(P7) = uf)

(j =1,...,N) with the least possible forces acting on the dies.

2.2. Asymptotic Model. Following [11], where the problem of unilateral contact for one die was in-
vestigated in detail, we construct an asymptotic representation of the solutions of problem (2.2)-(2.4), (2.7) for
0 < € < 1 using the method of matched expansions.

The external asymptotic representation (at a distance from the points P!, ..., PV) can be written as
N
(2) =) T7'Q;G;(w), (2.9)
j=1

where G;(x) is the Green function which is a solution of problem (1.10).
In the vicinity of the die with number j, we introduce “stretched” coordinates by the formula

¢ = V2(g — PY). (2.10)
The internal asymptotic representation w(£7) satisfies the relations

—Aew!(€) 20, w(€) = u(P?) - ®;(8),

Aw () [w! (€) — u(P) + @}(§)] =0,  ¢eR2 (2.11)

Here ®%(¢) = (2R}) ™' (6§ + &3). Tt should be noted that relations (2.11) are obtained from (2.2) and (2.3) with
allowance for (2.5) and (2.10).
The matching condition [see also (1.11) and (1.14)] is written as

95

wi(g) = L |§|+ZT LQuGH(PT) +O(¢[ ), €] — o0 (2.12)

k#3j

Problem (2.11), (2.12) admits a solution in closed form. We denote by a} the radius of the contact area
in the “stretched” coordinates. Then, under the assumption of continuity of the function w’(¢) and its first-order
partial derivatives, relations (2.11) are equivalent to the relations

j j *\ — * awj *\ — * *
w! (€) = u(P?) — (2R})™ ' (a})?, 8—p(€) =—(R;)"'a}, p=l¢=aq]. (2.13)
In this case, Aw’(€) = 0 for [£] > a}; based on (2.12), we have
j QJ 1
J J > ak. .
wl(§) = 5o In +ZT QuGr(P)), ¢l = a] (2.14)
Satisfying conditions (2.13), we obtain the dependences
(@)? = 2nT) ' Q;R;; (2.15)
o Qo Qi -1
Y J
B s 2 QrGr(P7). (2.16)

Eliminating the parameter a} from Eq. (2.16) with the use of (2.15) and taking into account (2.5), we have the
equation

Qj

21T (1))
47T

(1 +In QR

)+ DT QUGH(PT) = u(P). (2.17)
k#j

730



Thus, in the asymptotic model (2.17), which approximately describes the pressure of the system of small
spherical dies on an elastic membrane, the necessary condition for an extremum of function (2.8) has the following
form (j=1,...,N):

Qj ( 27TT(T0 1 1 21T ()2
—(1+1In )—i— T7'Q1Gy(P? —u} In ————
[4777’ Q;R; kzﬁ (P7) = o] o Q;R;
27TT(7"0 1 k Dk =1 _
+Z 1+ =00 ) + Y T QIGI(PY) |G (PF) + 0, T71Q; = 0. (2.18)
QiR o
The system of N nonlinear equations (2.18) serves to seek the optimal controlling forces Q1,...,Qn from the
specified displacements uj, ..., ud).

Remark 3. Equations (2.17) and (2.18) remain valid in the case of dies in the form of elliptic paraboloids
if the quantity R; is replaced by the arithmetic average of the curvature radii of the main normal sections of the
die surface at its vertex (see [11]).

3. ASYMPTOTIC SOLUTION OF THE
DISCRETE OPTIMAL CONTROL PROBLEM

3.1. Formulation of the Problem and Optimality Conditions. We assume that an elastic membrane
Q under a uniform tension T is clamped on the contour I', and on small areas w},...,w, it is acted upon by a
surface load ¢1(x), ..., gn(z). Using the notation introduced in Sec. 1.1, the problem of determining the membrane
deflection u(z) is written as
N

—TAyu(z Zxé x e (3.1)

u(z) =0, zel. (3.2)

In addition, let u},...,ul’ be specified constants. ~We consider the problem of determining the control
q1(z),...,qn(x) such that the solution u(z) of problem (3.1), (3.2) differs insignificantly from the constants
ud, ..., ul) on the small areas wl, ..., w2 respectively. We seek to find the least control by minimizing the objective

functional [compare with (1.5) and (1.4)]
(gr--av) = 5 Z// ) — ) +ajT72|wg|2qj(x)2} dz. (3.3)

The optimality conditions for the obJectlve functional of more general form than (3.3) were obtained in [3].
In the case considered, the optimal control problem (3.1)—(3.3) reduces to the following system of coupled differential
equations:

N
—Azu(x) = — Zxé(x)a;lﬂcugrzp(x), x € € (3.4)
j=1
N . .
—Agp(r) = Y X@)T (@) —wp),  we; (3.5)
j=1
u(z) =0, zel, p(z) =0, zel. (3.6)

Here p(x) is a conjugate function. In this case, the control is determined by the solution of problem (3.4)—(3.6)
according to the dependence
T2 .
qj(x):—ip(x), zew! (j=1,...,N). (3.7)
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We note that Egs. (3.4) and (3.5) were derived under the assumption of continuity of the functions u(x) and p(z)
and their first-order partial derivatives.

We examine the behavior of the solution of problem (3.4)—(3.6) for ¢ — 0 using the method of matched
expansions.

3.2. Construction of the Asymptotics. Passing to the limit as ¢ — 0 in (3.4)—(3.6), we obtain the first
limiting problem

Ayv(z) =0, x€Q\{P', ..., PN}, v(iz) =0, zelj (3.8)

Aupo(z) =0, ze€Q\{P.....,PY},  po(z)=0, zel. (3.9)

From (3.8) and (3.9), it follows that outside the areas w?,...,w!, Egs. (3.4) and (3.5) coincide with the Laplace
equation, which is invariant under coordinate stretching. Therefore, we fix the index j and consider Eqs. (3.4) and
(3.5) on the area wi.

In the transition to the “stretched” coordinates

¢ =Y x— P, (3.10)

Egs. (3.4) and (3.5) are transformed as follows:
e 2 Acu = a;lTs_4|wj|_2p, £ € wl; (3.11)
—e2Aep =T Hu —ud), £euwl. (3.12)

Here the argument x = P7 4 &7 of the functions u and p is omitted to simplify the presentation.
Because |w!| = €%|w’|, Eq. (3.7) on the area w’ can be represented as

T2 4 .
g = _W e p, el (3.13)
Accordingly, Eq. (3.11) becomes
—e 2T Aeu = g5, £euwl, (3.14)
We set
0= 20, feu. (3.15)

In this case, the total load on the area w’ is equal to [see (1.3)]

Q, = / / gi(e (3.16)

In view of relations (3.14) and (3.15), the internal asymptotic representation for the function «(z) in the vicinity of
the area w? is represented as the logarithmic potential

= _—//T n)In|§ —n|dn+ ¢, (3.17)

where c¢; is a constant.
For function (3.17), the following asymptotic formula is valid:

W) = o2k Inlel 4o + O, Iel = oo, (318)

From the condition of matching of the internal asymptotic representation w/(£) and external asymptotic
representation v(z), using formula (3.18), we obtain the following representation for v(x):

N
=3 "17'Q,G5(x). (3.19)
=1
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Here G,(z) is the Green function that satisfies problem (1.10). At the same time, for function (3.19) with z — P7,
the following expansion holds [see (1.11)]:
Q] 1 | P

|
2nT ] + D T'QkGr(P?) + Oz — P)). (3.20)

k#3j

v(z) = —

Transforming to coordinates (3.10) in relation (3.20) and comparing the result with expansion (3.18), we determine
the constant c;:

Q;

oo In —+ZT LQrGr(PY). (3.21)

"o kg

Let us determine the function ¢;(£). In view of relations (3.13) and (3.15), Eq. (3.12) is written as

Cj:

a T w [PAcq; (€) = w (&) —u), € w. (3.22)

It should be noted that in the notation of Eq. (3.22), the function u is replaced by its internal asymptotic repre-
sentation. Similarly, Eq. (3.14) becomes

~TAgw’(€) = ;(§), Eeuw’. (3.23)
The solution of Eq. (3.22), in turn, is written as the logarithmic potential
1 _ . , , §
= o= [ [ ar Tl 2wl ) — iy e~ an+ . (3.24)

where ¢} is a constant.
According to formulas (3.24), (3.13) and (3.15), we obtain

RO = // W () — ) ¢ =l dn — ;| PT % (3:25)

By the construction, function (3.25) is harmonic in the domain of R? \ @’ and can serve as an internal asymptotic
representation of the function p in the vicinity of the area wi. _

We determine the constant ¢} by matching the function py () to the function pg(x) — the external asymptotic
representation of the function p. By virtue of the asymptotic formula

PO = —pin |§|// W (1) = uf) dn = <2, W P2 + O(11 ),
we have
po(w) =T 3 (@7 — )G ().
j=1
Here
1 .
v = — T (n) dn. 3.26
=57 /[ wnin (3.26)
wi
Using the expansion
e2lwi| , _. =PI g2 , ;
- _ o il ok _ ok J _pJ
le) = =50 @ =) In o 30— () + Ol — P,
k#j
which is valid for x — P7, we find
« T || _j j € _k k j
= oo (g (@ —ul) In g ;(w — uk)Gr(P )). (3.27)
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Finally, taking into account relations (3.21) and (3.27), we have

Tw (€ // |£ nld +Zij//Qk ) dn,

k#3j

aj|;g|2 ” Zﬂ// ; E|§ 77|d _Zij o k|// dﬂ—uo)

Thus, the asymptotic representation of the solution of problem (3.4)—(3.6) constructed above contains the
functions ¢; (£) and w? (€) specified on the area w’ (j = 1,..., N) for which the system of coupled integral equations
(3.28) is obtained.

3.3. Asymptotic Model for the Case of Circular Control Areas. Let w/ be a circle of radius ¢’ with
center at the coordinate origin on the plane of the “stretched” coordinates. Then, according to formulas (3.17),
(3.21) and (3.25), (3.27) for p = |{| > a;, the following representations are valid:

(3.28)

: Q5 1
J = In T 2
w (§) 9T - +]; QrGik; (3.29)
2
, c .
pp(§) = TonT jw?|(@ — Uo T Z ok — uo G- (3.30)
k#3j

At the same time, for 0 < p < a;, we have Egs. (3.22) and (3 23), which imply the relations

AeAe(w! (€) —up) + X} (W (€) —up) =0,  Eeu,
. (3.31)
AcAeq;(6) + Njgj(€) =0,  Eew.
Here A} = o 'w?| 2.
Under conditions of circular symmetry, the solutions of Egs. (3.31) are expressed in terms of Kelvin functions
(see, for example, [12, Part 2, Chapter 1, § 2])

w! (§) — ul = A; ber (\;p) + B; bei (\;p); (3.32)
q; (§) = Aj ber (\;p) + B bei (\;p). (3.33)
Here ber (z) and bei (z) are Kelvin functions (of zero order) defined by the expansions (see formula (8.564) in [13])

e (_1)kx4k ) e (_1)kx4k+2
b = s b = .
er (z) ;;J 24k[(2k) ]2 ei(z) ;;J 24 2[(2k + 1)1
By virtue of relations (3.13) and (3.15), the following equality holds:
R = -, T2 W/ Pgj (), gew, (3:34)

According to representations (3.29) and (3.32), the continuity condition for the function w’(¢) and its
derivative on the circle p = a; is written as

Ajber’ (\ja;) + Bjbei'(Aja;) = —(2nTAja;) 7' Q;,

Qj
2T

(3.35)
Aj ber ()\jaj) —I—Bj bei ()\jaj) = —u% +ZT QkGJk

0 k]

Similarly, according to representations (3.30), (3.34), and (3.33), the continuity condition for the function p?(€) and
its derivative for p = a; is written as

T(@) — uj)

* / * i
A5 ber'(Aja;) 4+ B bei' (Aja;) = o | Ny

(3.36)
. T B |w?| | ea B
A* ‘a:) + B* ‘) = —— J ) 21 22 k_
i ber (\ja;) + B} bei (\ja;) A ((w u)) o 7{) kééj(w uO)ij)
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Substitution of expressions (3.33) into formula (3.16) yields

aj

Q; =2r / (A;. ber (\;p) + B] bei (/\jp))pdp. (3.37)
0
Using the formulas (see [14, Chapter 3, § 6])

/{ber (€) d¢ = wbei’(x), /gbei (€) d¢ = —x ber'(z),
0 0

from relation (3.37), we have
Qj = 2\ a; (4] bei' (\jay) — B} ber' (A;a5))). (3.38)
Similarly, substitution of expression (3.32) into formula (3.26) yields
@ —uf = 2(\a;) " (45 bet' (ay) — B ber'(Aay) ). (3.39)

Thus, the substitution of expressions (3.38) and (3.39) into Eqgs. (3.35) and (3.36) reduces the problem of
determining the optimal control to a system of 4N linear algebraic equations for the coefficients A;, B; and A7,
B; (j =1,...,N). In turn, determining the coefficients A; and B; from the system of two equations (3.35) and
the coefficients A7 and B} from system (3.36) and substituting the result into Egs. (3.38) and (3.39), we obtain a
system of 2N equations for the quantities Q; and w’ (j =1,..., N), which have a mechanical meaning.

The author thanks V. A. Kovtunenko for useful discussions.
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